Archive for noviembre, 2012


Científicos de la Universidad Rice desarrollaron una nueva tecnología que utiliza nanopartículas para producir vapor en forma más efectiva sin que ningún líquido necesite alcanzar el punto de ebullición. Los investigadores dicen que su método, conocido como vapor solar, es tan eficiente que puede crear vapor a partir del agua congelada y es ideal para…


Anuncio publicitario

30 de noviembre de 2012 at 13:16 Deja un comentario

Nueva Botella de agua Inspirada en el concepto del escarabajo de Namibia, genera y almacena agua de la humedad ambiental.


Posted By  On Nov 30, 2012 In Water In AmericaWater Technology & Innovation

bottled waterThere’s been a lot of Internet buzz about a United States startup company designing a novel, self-filling water bottle.

This design, by NDBNano, is inspired by an African desert beetle known as the Namib beetle, which survives in the arid region through its ability to capture and store moisture from the air by condensing moisture on its back.

NBDNano’s Deckard Sorensen is creating the prototype bottle, which is able to collect air from the surrounding atmosphere using a fan attached to the bottle. The fan insures that air will pass over the surface of the bottle, which is coated with materials that both attract and repel water. The water condenses, then is stored in the bottle.

These types of nature-inspired technologies are typically referred to as bio-inspired or bio-mimetic. Items from robots to various materials have been created based on a wide variety of characteristics found in nature. This includes animal or insect locomotion, or properties such as the lotus leaf’s ability to repel water, or the stickiness of a gecko’s foot, even the structure of an animal’s eye.

Onymacris unguicularis in Namib DesertThe naturally occurring properties of this particular insect that are of most interest to the designers involve how the surface of the beetle’s body interacts with water. These properties are known as superhydrophobic — water-repelling — and superhydrophilic — water-attracting.

The Namib beetle collects condensation on its hard wings. The tip of its shell is covered in tiny, water-attracting bumps; however, the sides of its shell repell water. Water collected from the environment accumulates on its back. When sufficient water is present, it runs straight to the beetle’s mouth.

A prototype bottle has been tested. Properly designed, such a bottle could collect from half a liter to as many as three liters of water per hour, states NBDNano. The performance of the bottle does depend on the local environment.

Miguel Galvez, the company’s co-founder, told the BBC:

Dry places like the Atacama Desert or Gobi Desert don’t have access to a lot of sources of water. So if we’re creating [several] litres per day in a cost-effective manner, you can get this to a community of people in Sub-Saharan Africa and other dry regions of the world. And if you can do it cheaply enough, then you can really create an impact on the local environment.

The World Health Organization estimates about one in two people reside in areas where water is scarce. This is about three million people.

The Namib beetle, according to Wired UK, served as the bio-inspiration for the Airdrop. This irrigation system, which works by pumping and then cooling air passing through underground pipes to create condensation at plant roots, was developed by Edward Linacre and has won the 2011 James Dyson Award, an international student design contest administered by the James Dyson Foundation.

This water harvesting technology, although energy-efficient, could not satisfy a single community’s water needs, Erik Harvey from WaterAid told the BBC. He said:

Even in water-scarce areas, communities need more water than what they would consume for themselves — livestock and agriculture in arid environments are very important. […] There is a range of viable markets for [these types of water bottles], like the military or the outdoors market, people going camping, and the advantage that they may have is a much lower energy input device.

“Fabricating a physical catalyst that manipulates water on a molecular level and materializes it in bulk before our eyes would be impressive,” opined ExtremeTech. “In actuality, waiting to slake your thirst with such a bottle would probably be more like waiting for seedlings planted at home to grow into a hedge.”

NBDNano is a startup company created in May 2012 by four recent university graduates, some of whom have backgrounds in materials science and chemical engineering. It is focusing its efforts on creating water harvesting technologies that could include improved home dehumidifying units, military equipment for producing potable water in the field, greenhouse watering systems, and solutions for producing potable water in developing nations.

NBDNano is still working on the prototype’s design and seeking funding for the bio-inspired water bottle. On its website, the company clearly states that the bottle remains “a conceptual design that one day could be feasible, although it could be years away.”

30 de noviembre de 2012 at 13:06 Deja un comentario


Posted By  On Nov 28, 2012 In Water In EuropeWater Technology & Innovation

Researchers at Aalto University in Finland created a method designed to reduce phosphorous in pulp mill wastewater.

The process uses iron sulphate, which is added to the wastewater prior to the biological wastewater treatmentprocess. The phosphorus dissolved into the effluent is precipitated simultaneously with the biomass in the treatment plant.

Simultaneous precipitation does not require additional wastewater treatment units, according to the researchers. This eliminates additional treatment and results in energysavings. Iron sulphate is also an inexpensive chemical, which makes the process more affordable.

Professor Olli Dahl, one of the researchers, explained:

From the viewpoint of comprehensive environmental protection and sustainable development, the best method is always the one that saves energy and minimizes the amount of waste. With the help of the studied simultaneous precipitation method, it is possible to completely avoid additional stages of wastewater treatment, reduce the amount of solid waste and save energy. Simultaneous precipitation produces hundreds of thousands of euros worth of savings in operating costs, as energy consumption and the need for additional chemicals is reduced.

The phosphorus precipitated using this process is removed with the sludge. Since sludge is typically burned in Finland, any phosphorus would be contained in the ash, which could be reused as fertilizer.

The researchers conducted initial testing in the university’s laboratories. “The results were so promising,” noted researchers, “iron precipitation was also successfully tested at the wastewater treatment section of a pulp mill.”

Additional pilot stage experiments were made at a pulp mill where they used iron sulfates during the secondary treatment of elemental chlorine-free kraft pulp mill wastewater.

The researchers say the best result they achieved was an 81% reduction in phosphorus when adding 10 milligrams per liter of iron sulphate into the wastewater during the activated sludge process. “No notable change in either chemical oxygen demand (COD) or adsorbable organic halogen (AOX) reduction nor in the properties of sludge settling were observed during this experiment,” they noted. “Furthermore, no problems in sludge treatment due to increased iron concentrations in the waste sludge were reported.”

The kraft process is a chemical process used to convert wood into wood pulp. Wood chips are mixed with a solution of sodium hydroxide and sodium sulfide that breaks apart the lignin and cellulose present in the wood pieces. This process can also be referred to as kraft pulping, or the sulfate process.

Creating paper requires a great deal of water, which results in the generation of a nearly equal amount of wastewater. Pulp mill effluent typically can contain (link is PDF) not only the unwanted lignin, but also substances such as alcohols, tannins, dyes, and heavy metals. The wastewater also has high biological oxygen demand and dissolved organic carbon as well. The effluent typically requires additional polishing, usually as a tertiary process, to meet local water discharge standards.

Finnish government officials are mandating reduced industrial phosphorus emissions. Several manufacturers are using aluminum in an additional post-treatment precipitation stage; however, the resulting sludge is difficult to process.

The researchers note that forestry-industry-generated wastewater typically contains less phosphorus than municipal wastewater and the iron added during their treatment process “remains within reasonable limits.”

The researchers’ paper, “Simultaneous precipitation of phosphorus in a kraft pulp mill wastewater treatment plant,” was published in the journal Water Science & Technology.

29 de noviembre de 2012 at 07:51 Deja un comentario

Prometedora nueva tecnología de Biofilm para el tratamiento de aguas residuales.

Posted By  On Nov 21, 2012 In Water Technology & Innovation

Notre Dame Wastewater Samples

Robert Nerenberg, an associate professor of civil and environmental engineering and earth sciences at the University of Notre Dame, hasdeveloped a method for wastewater treatment he says may significantly decrease the chemical costs and carbon footprint associated with conventional wastewater treatment.

A greater number of wastewater treatment plants use biological nutrient removal, which typically requires additional chemicals to work effectively. This might include a chemical that provides an external electron donor, or else a carbon source, such as methanol or ethanol. Typically, these types of chemicals are expensive, toxic, and also have a significant carbon footprint.

Gasses including hydrogenmethane, and oxygen are inexpensive and can help with microbial processes, including those that aid in water treatment. They have rarely been used as electron donors in wastewater treatment because they have a low solubility.

The biofilm reactor technology on which Nerenberg is working would directly deliver the gas to the biofilm, which eliminates these problems. He is studying the feasibility of using various inorganic or gaseous compounds — including sulfur, sulfur dioxide, sulfite, hydrogen sulfite, and methane — for delivery to membrane biofilm reactors.

As Nerenberg explained in a 2005 seminar presenation, membrane biofilm reactor (MBfR) technology “is a novel system that uses membranes to supply dissolved gas directly to a biofilm growing on the membrane surface.”

He adds:

MBfRs are not membrane bioreactors (MBRs). An MBR is a biological treatment process where a membrane is used to separate biomass from the effluent water, substituting for a clarifier. Because MBRs act as filters, they are susceptible to fouling by biofilms or other materials that accumulate at the membrane surface. In contrast, in MBfRs a gaseous substrate moves across the membrane, while the naturally-forming biofilm on the outer surface catalyzes desired reactions. Since the pores of the membrane are hydrophobic, water and bacteria do not penetrate and block them. The combination of a membrane for gas delivery as well as for biofilm support led to the name Membrane-Biofilm Reactor.

As the university explains in a press release:

Many of these compounds are waste products of other industries and can be much more cost effective and sustainable than the carbon compounds currently used in BNR processes. Elemental sulfur, for example, is a waste product from a number of industries, including oil refining and coal or gas-burning refining plants, and in many cases these industries would be happy to provide the sulfur for free to entities willing to remove it. The research thus also offers a means to transform a waste product into a valuable resource.

Membrane-biofilm reactor technology has been demonstrated in pilot testing. The approach is being scaled to work in larger treatment operations.

Robert Nerenberg

Nerenberg received the Water Environment Research Foundation Endowment for Innovation in Applied Water Quality Research 2012 Paul L. Busch Award. This award of $100,000 “recognizes an outstanding individual whose ongoing efforts contribute significantly to water quality research and its practical application in the water environment.”

This funding and recognition should help the work move forward. Nerenberg is reportedly focusing now on applying the approach to work with sulfur and sulfur dioxide, which he says possess the greatest potential for immediate application. He is working with the Hampton Roads Sanitation District in Virginia, where there have been preliminary denitrification tests with both sulfur and sulfur dioxide.

The research should ultimately determine the optimal applications and configurations of membrane-biofilm reactor technology that would be able to decrease wastewater treatment costs while increasing the operation’s sustainability.

Images courtesy The University of Notre Dame.

22 de noviembre de 2012 at 07:11 Deja un comentario


Posted By  On Nov 16, 2012 In Water In AmericaWater Technology & Innovation

Logan in lab, 2012

Penn State researchers see a great deal of unused, available energy in saltwater. Bruce E. Logan, a professor at the university who is leadingresearch on the topic, says the salinity differences between fresh and saltwater can produce electricity.

Salinity gradient energy technology uses the naturally occurring energy found when fresh and salt water mix. The concept was originally developed in the 1970s, but research and development has progressed slowly despite its potential.

“A remarkable amount of energy is available from the salinity difference between sea water and fresh water,” explained Logan. “In theory, up to 0.8 kilowatts per cubic metre could be extracted — equivalent to the energy generated from water falling over a dam more than 280 metres high. The limiting factor in obtaining this energy is the supply of fresh water: about 2 terawatts (1 TW is equal to 1,000 gigawatts) is available globally from rivers flowing into the sea, of which perhaps 980 GW could be harnessed.”

Those places where effluents are discharged, such as coastal sewage treatment plants, could prove ideal locations for these types of systems. Wastewater released into the ocean could create another 18 GW of salinity-gradient power.

“You always have wastewater where you have people. And you’ve got a lot of wastewater being generated at the coastline,” said Logan.

Among the possible technologies that might be applied for creating salinity gradient power are pressure-retarded osmosis and reverse electrodialysis. Pressure-retarded osmosis uses flowing water that passes through membranes to produce pressurized water. Electricity is generated in this system using mechanical turbines. Reverse electrodialysis creates energy based on ion flow.

These systems have been used for capturing natural salinity-gradient energy using sea water and river water; however, both technologies are relatively costly. Another challenge is that these systems are hampered by membrane fouling.

Salinity gradients are one of five different ways in which ocean energy can be harvested. In a 2007, it was estimated that salinity gradients could generate 2,000 TWh of energy per year, or 11.5% of theglobal energy production.

Most of the research being conducted on this type of osmotic power generation is reportedly occuring in Norway and the Netherlands.

Additionally, the Penn State scientists are working on adapting the concept to work with low-temperature waste heat from which additional energy can be extracted. Logan says power plants typically generate two times the waste heat versus the electricity produced. Pressure-retarded osmosis and reverse electrodialysis technologies can be adapted to capture the waste heat.

Because these technologies are still relatively undeveloped, questions remain about their potential environmental impact — which may be negligible — and costs when operating at a large scale.

However, these innovations should not be ignored. As Logan explains:

Water can continue to make energy for us in many new ways, not just channeling it through a hydroelectric dam. […] We’re just not taking advantage of it. And we’re wasting a lot of energy every day at wastewater treatment plants and existing power plants around the world. It’s time to change that.

Logan and his colleagues published (PDF) their findings earlier this year in the journal Science.

18 de noviembre de 2012 at 21:53 Deja un comentario

Aceite vegetal para desarrollar biocombustible

Aceite vegetal para desarrollar biocombustible. Los biocombustibles han surgido ante la necesidad de obtener una alternativa a losderivadosdel petróleo, debido a que éstos son un recurso agotable y muy contaminante.

Se considera que son una fuente de energía renovable, ya que se obtienen de plantas que pueden ser cultivadas a voluntad por el hombre.

Los principales biocombustibles están representados por el bioetanol y el biodiésel, éste último obtenido a partir de semillas de plantas oleaginosas, pudiendo éstas ser comestibles o no.

De cualquier aceite vegetal puede obtenerse biodiésel, ya sea usado o no. Algunas personas lo fabrican de forma casera utilizando el aceite que ha sido previamente empleado en las frituras y que suele descartarse de manera poco ecológica (en los desagües).

Para que el aceite vegetal se convierta en biodiésel debe someterse a un proceso llamado transesterificación, en el cual se utilizan como reactivos el etanol o el metanol, dando lugar a dos sustancias: la glicerina y el biodiésel, los cuales se separan en el proceso.

La glicerina puede ser utilizada en productos de limpieza o cosmética y el biodiésel como combustible para motores, ya sea puro o mezclado con diésel proveniente del petróleo.

15 de noviembre de 2012 at 01:31 Deja un comentario



Investigadores en los Emiratos Arabes Unidos están trabajando para determinar cómo se podrían utilizar los lodos remanentes cargados con bacterias provenientes de la producción de petróleo para el tratamiento de aguas.

Salman Ashraf, profesor asociado de bioquímica de la Universidad de los Emiratos Arabes Unidos, fue premiado con AED750.000 (USD$204.000) por la Fundación Nacional de Investigaciones para explorar este tema.

Ashraf y su equipo están analizando a las bacterias que viven en los residuos producidos por la refinería Ruwais para determinar cuál bacteria o combinación de ellas podrían trabajar mejor. Y dijo:

En este momento tenemos ocho bacterias que hemos aislado de esa fuente, de los lodos contaminados con petróleo. […] Estamos actualmente experimentando con estas bacterias para ver si pueden degradar diferentes tipos de contaminantes. Estamos en una etapa preliminar pero los resultados parecen ser muy prometedores.

Anteriormente había determinado que la bacteria Brevibacillus sp. podía degradar al Toluidino azul, una tintura textil de uso muy difundido. Estos hallazgos originales fueron publicados en el año 2007.

Glen Brezius, un químico de los Estados Unidos escribiendo online en el año 2010, observó:

La química orgánica creció a partir de las fábricas de tinturas de Europa pero a pesar de todo el progreso que se logró en el campo de los colorantes en los últimos doscientos años, un acuciante problema continúa pendiente: ¿Cómo disponer en forma adecuada las aguas residuales con brillantes colores que salen de los molinos textiles? […] En tiempos no tan lejanos, era aceptable simplemente arrojar las aguas residuales al océano y olvidarse de ellas. No obstante, ese tipo de conducta ya no es más tolerada y las plantas textiles comenzaron  a enfrentar este problema de tipo muy real. Es un hecho que la mayoría de los ciudadanos simplemente no aceptan que sus ríos y lagos se conviertan en psicodélicos paisajes con manchas de colores púrpura, verde y rosa.

Ashraf dijo que planea explorar la utilización de las bacterias en 10 clases diferentes de contaminantes orgánicos.  Estos incluyen al trifenilo y a los colorantes azoicos. Esta última tintura está entre los pigmentos más comúnmente utilizados en la industrial textil.

Los colorantes textiles son una de las fuentes principales de contaminación de las aguas en el mundo en desarrollo, afirma Ashraf. Aproximadamente un millón de toneladas de tinturas orgánicas se producen anualmente. De esta cantidad, explica Ashraf, como mucho el 20% se pierde en efluentes creados en la fabricación de tinturas y en los procesos de aplicación. Si se liberan al ambiente, estos efluentes industriales constituyen un peligro para la salud pública ya que pueden ocasionar problemas graves a las personas tales como enfermedades de la piel y cáncer.

Tal como Ashraf lo explicó a The National, el uso de contaminantes coloreados puede también ayudarlos a evaluar más fácilmente el proceso que están desarrollando:

Estamos utilizando contaminantes textiles como modelos debido a que al ser de colores, es fácil ver si el color disminuye, es decir, si está funcionando. […] La idea fue utilizar este paso experimental y aplicarlo en la vida real con contaminantes del petróleo. La prueba real de su efectividad se hará en los propios cuerpos de agua, tales como el arroyo Dubai, en donde el agua está muy contaminada.

Ashraf dice que las bacterias podrían ser también capaces de degradar otro tipo de contaminantes, incluyendo residuos de combustibles que son químicamente similares y que podrían descargarse de las refinerías o de camiones cisterna al mar.

Todavía deben escalar el proceso para que el enfoque sea el adecuado para su utilización en una planta piloto.

Parte de este trabajo fue presentado en forma reciente durante el UAE-Swiss Research Day (el vínculo es un PDF) que se desarrolló en Dubai.

15 de noviembre de 2012 at 01:25 Deja un comentario

La Diputación encuentra agua con un caudal de 250 litros por minuto en Torre d’En Besora

  • La actuación ha contado con un presupuesto de unos 20.000 euros

Europa Press | Castellón

El presidente de la Diputación de Castellón, Javier Moliner, ha comprobado este viernes en Torre d’En Besora que la obra llevada a cabo por el Plan de Ayudas a Infraestructuras Municipales ha logrado encontrar un importante depósito de agua con un caudal de 250 litros por minuto.

La actuación, que ha contado con un presupuesto de 20.000 euros, ha consistido en realizar un sondeo en la partida carrascal de la localidad, una obra que ha dado sus frutos y gracias a la cual este pequeño pueblo del Alt Maestrat podrá solventar las carencias de agua que venía arrastrando históricamente, lo que suponía un inconveniente para el desarrollo local, según ha informado la Diputación en un comunicado.

«Hoy la Diputación cobra más sentido que nunca, pues gracias a nuestra colaboración con este ayuntamiento hemos hecho posible el hallazgo de este pozo que permite un futuro próspero para el pueblo, con el suministro de agua garantizado durante varios años», ha apuntado el presidente de la Diputación.

Moliner también ha añadido que la actuación en materia de agua es «vital» para consolidar la población en los núcleos rurales, por eso –ha dicho– «estamos actuando en todo el ciclo integral del agua, desde el abastecimiento hasta los drenajes, alcantarillados o depuración de aguas». «Este es el trabajo de las administraciones, poner por delante los servicios que en un momento de crisis como éste son irrenunciables para un ayuntamiento», ha añadido.

Por su parte, el alcalde de Torre d’En Besora, David Vicente Segarra, ha agradecido la iniciativa de la institución provincial por «creer en los municipios del interior, ya que contamos con muy pocos recursos para sacar nuestras familias adelante y, sin duda, el agua es fundamental para la prosperidad de nuestra tierra, de los cultivos, explotaciones agroganaderas y nuevas oportunidades turísticas».

Son más de nueve millones de euros los invertidos en gestión de depuradoras, obras de mejoras y nuevas estaciones, cofinanciadas por la Generalitat Valenciana, así como en el programa de saneamiento, abastecimiento y distribución de aguas en los municipios menores de 5.000 habitantes.

Recientemente, la Diputación ha llevado a cabo nuevas actuaciones en cuanto al ciclo integral del agua como en Artana, donde se van a invertir 9.187 euros en sufragar el 100 por cien de la sustitución del forjado de la balsa de decantación; o en La Llosa, que se financiará el 23 por ciento del coste del suministro e instalación de contadores de agua con una inversión de 10.000 euros.

Por su parte, la inspección y ensayo de bombeo en el pozo de la partida de Royos de La Mata, en la Todolella, tendrá una inversión de 7.381 euros por parte de la institución provincial; mientras que la sustitución de la red de abastecimiento de agua potable de la tercera fase del carrer de baix de Vilar de Canes contará con un presupuesto de 15.770 euros.

10 de noviembre de 2012 at 23:13 Deja un comentario

Vichy Catalán lanza agua enlatada para llegar al público joven

Formato lata Vichy Catalán


También entra en el mundo de los refrescos naturales con el nuevoVichy Catalán limón


Vichy Catalán ha presentado este jueves su nuevo formato en lata de 33 centilitros, con lo que se convierte en la única marca del país que envasa agua mineral natural carbónica en este tipo de formato, ha informado en un comunicado.

Con este nuevo envase, la compañía catalana se dirige a un público objetivo integrado por jóvenes de entre 16 y 35 años con un «estilo de vida urbano y saludable», ya que la estrategia pasa por facilitar nuevos momentos y lugares de consumo.

Vichy Catalán ha destacado que la lata «mantiene inalterable la calidad», y además incorpora una tapa especial de plástico biodegradable y reciclable que protege el contenido de la suciedad y ayuda a preservar el gas natural del agua.

La compañía catalana también ha presentado este jueves el nuevo Vichy Catalán limón, que no es una limonada, sino un refresco elaborado con agua mineral de la casa y el aroma natural de este cítrico.

Con este lanzamiento, el grupo se inicia en el segmento de los refrescos naturales, ya que ha desarrollado una nueva línea de productos que se irán lanzando al mercado próximamente de forma escalonada.

Las latas de Vichy Catalán, de agua mineral y agua mineral con limón, incorporan un código QR, que almacena información sobre los nuevos canales del entorno 2.0 con el objetivo de fomentar la interacción con los consumidores más jóvenes.

9 de noviembre de 2012 at 08:04 Deja un comentario

La primera planta solar para producir hidrógeno a partir de agua ya es técnicamente viable

El hidrógeno representa una de las principales formas de energía del futuro, aunque su obtención por métodos tradicionales resulta cara y genera grandes cantidades de CO2.

Planta piloto del proyecto ‘Hydrosol II’ de

la Plataforma Solar de Almería. Foto: UNED.

El prototipo de la primera planta solar del mundo para producir hidrógeno a partir de agua da sus primeros frutos. La planta, desarrollada en 2008 –en el marco del proyecto europeo Hydrosol II– y ubicada en la Plataforma Solar de Almería, es viable técnicamente, tal y como recogen los resultados, publicados en la revistaInternational Journal of Hydrogen Energy.

“Hemos demostrado la viabilidad técnica de esta planta pionera”, asegura Sebastián Dormido, investigador del departamento de Informática y Automática de la UNED y uno de los autores del estudio.

El prototipo se basa en un concepto sencillo: conseguir hidrógeno extrayéndolo del agua –en la que está presente– con energía solar. Sin embargo, hasta ahora no se había puesto en práctica. “Los dos elementos son baratos y, de momento, inagotables”, comenta el investigador.

En colaboración con ingenieros del Ciemat, Dormido ha desarrollado un nuevo modelo matemático que se ha podido validar satisfactoriamente con los datos experimentales de la planta piloto. El objetivo es controlar la temperatura de los reactores del prototipo, a pesar de cualquier perturbación, como la variación que se produce en la radiación solar.

La planta consigue que se alternen de forma óptima los ciclos de hidrógeno y oxígeno de sus dos reactores, produciendo el fluido de forma continua.

Una planta real en pocos años

Dentro dos o tres años, cuando se hayan solucionado algunas cuestiones técnicas (relacionadas con el envejecimiento de los materiales), podría empezar a construirse una planta real. Su localización idónea sería un lugar con el máximo número de horas de sol, como es Almería. “La falta de radiación solar es un problema, aunque se puede almacenar”, apunta Dormido.

El hidrógeno representa una de las principales formas de energía del futuro. Uno de sus inconvenientes es que su obtención aún resulta cara y, con los métodos tradicionales, genera grandes cantidades de dióxido de carbono -gas de efecto invernadero-. Con esta nueva planta ‘verde’, la contaminación se reduce a niveles mínimos.

2 de noviembre de 2012 at 10:16 Deja un comentario

Reducción del coste de tratamiento de aguas residuales

An award-winning ABB medium voltage drive has reduced the energy consumption of the aeration blowers at a US wastewater treatment plant by more than 1 million kilowatt-hours a year – a reduction of more than 30 percent that saves the city utility $75,000 annually.

By ABB Communications

The aeration basins (left) and aeration blower system (right) at the City of Beloit Water Pollution Control Facility, Wisconsin

The ACS 2000 medium voltage variable speed drive was installed in July 2011 and has achieved some remarkable results within its first year of operation at the City of Beloit Water Pollution Control Facility (WPCF) in Wisconsin, United States.

The facility treats an average of 5.5 million gallons (20.8 million liters) of wastewater a day from the city’s 37,000 inhabitants, as well as industrial waste from local businesses and biological waste from food processing plants.

Like many wastewater treatment plants, Beloit uses a conventional activated sludge process for treating the wastewater. At the heart of this process are the aeration basins in which microorganisms break down the organic matter in the wastewater. These bacteria require oxygen to survive, which is provided by huge aeration blowers that blow air through diffusers at the bottom of the basin.

ACS 2000
Winner of the 2010 Frost & Sullivan European Medium Voltage Drives
New Product Innovation Award

Aeration blowers typically account for 50 percent or more of the electricity consumed by a wastewater treatment plant, and Beloit is no exception. Prior to the installation of the ACS 2000, the aeration blower system at Beloit WPCF was controlled by an inlet throttling valve – a common solution for blower control that operates at fixed speed and does not offer the same operating and cost benefits as variable speed drives.

For Beloit WPCF these benefits are wide-ranging and include soft start capability, ease of installation, direct-to line (transformerless) connection to the power supply network, minimal harmonic distortion, non-requirement of medium voltage power factor correction, compact and lightweight footprint, short payback time and low total cost of ownership.

These benefits are enhanced by an ABB DriveMonitor™ intelligent diagnostic system that performs remote and real-time monitoring and diagnostics of the drive via a wall-mounted PC connected to the telephone line.

Once the ACS 2000, was installed the power consumption of the aeration blower system dropped by more than 30 percent and total plant energy consumption by 15 percent, which is more than 1 million kilowatt-hours a year. At an average composite rate of $0.62/kWh, the annual savings for the City of Beloit amount to $75,000.

2 de noviembre de 2012 at 10:11 Deja un comentario

Suecia compra a Noruega la basura para cumplir con sus necesidades energéticas

Sweden started buying trash from Norway in order to meet its ongoing energy needs. The nation is extremely efficient at managing its refuse and no longer has sufficient waste to incinerate.

Sweden now imports roughly 800,000 tons of trash, most of it from Norway. According to PRI, “it’s more expensive to burn the trash there and cheaper for the Norwegians to simply export their waste to Sweden. […] In the arrangement, Norway pays Sweden to take the waste off their hands and Sweden also gets electricity and heat.” Any toxic ash, such as the ash containing heavy metals, is returned to Norway for disposal.

Avfall Sverige, or Swedish Waste Management, estimates (link is PDF) each person in the nation generates a half ton of waste annually. An estimated 4% of Sweden’s household waste is sent to landfills while the remainder is either recycled or fuels waste-to-energy power plants, according to the agency. In the United States, in 2010, 250 million tons of trash was generated, and of that about 34% was recycled, estimates NPR.

Overtornea heat power plant

Waste-to-energy plants supply 20% of Sweden’s district heating. District heating is a heat distribution system that uses heated water piped into residential and commercial buildings. The system also provides electricity for a quarter of a million homes.

Avfall Sverige reports state that national incineration capacity has trebled and energy production has increased five-fold since the mid-1980s as emissions have been reduced in by almost 99%.

The average amount of trash generated in Europe sent to landfills is about 38%. Sweden stands at 1%, according to Eurostat.

Waste-to-energy can meet a great deal of Europe’s annual heating needs, according to the organization:

[A]round 50 million tons of waste are processed through incineration every year throughout Europe. This corresponds to the heat requirements for the populations of Sweden, Norway, Iceland, Finland, Denmark, Estonia, Latvia and Lithuania. In Sweden alone, waste incineration generates as much energy as 1.1 million cubic metres (m³) of oil, which reduces carbon dioxide (CO2) emissions by 2.2 million tons per year. This is as much CO2 as 680,000 petrol-powered cars emit in a year.

Catarina Ostlund, Senior Advisor for the Swedish Environmental Protection Agency, told PRI that Sweden is producing very little waste and cannot meet its needs for heating. She says that the nation still needs to reduce its waste output.

She said the arrangement with Norway is merely a stopgap:

This is not a long-term solution really, because we need to be better to reuse and recycle, but in the short perspective I think it’s quite a good solution. […] I hope that we instead will get the waste from Italy or from Romania or Bulgaria or the Baltic countries because they landfill a lot in these countries. They don’t have any incineration plants or recycling plants, so they need to find a solution for their waste.

Sweden began implementing its waste-to-energy system after World War II.

Avfall Sverige was founded in 1947 and is a 400-member association consisting primarily of muncipalities with about a fourth of its membership from the corporate sector.

2 de noviembre de 2012 at 10:07 Deja un comentario

Entradas anteriores

noviembre 2012